Weak laws of large numbers for arrays of rowwise negatively dependent random variables
نویسندگان
چکیده
منابع مشابه
MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....
متن کاملON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES
In this paper, we extend and generalize some recent results on the strong laws of large numbers (SLLN) for pairwise independent random variables [3]. No assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). Also Chandra’s result on Cesàro uniformly integrable r.v.’s is extended.
متن کاملmarcinkiewicz-type strong law of large numbers for double arrays of negatively dependent random variables
in the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. let be a double sequence of pairwise negatively dependent random variables. if for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). in addition, it also converges to 0 in . the res...
متن کاملon the laws of large numbers for dependent random variables
in this paper, we extend and generalize some recent results on the strong laws of large numbers (slln) for pairwise independent random variables [3]. no assumption is made concerning the existence of independence among the random variables (henceforth r.v.’s). also chandra’s result on cesàro uniformly integrable r.v.’s is extended.
متن کاملLaws of Large Numbers for Random Linear
The computational solution of large scale linear programming problems contains various difficulties. One of the difficulties is to ensure numerical stability. There is another difficulty of a different nature, namely the original data, contains errors as well. In this paper, we show that the effect of the random errors in the original data has a diminishing tendency for the optimal value as the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics and Stochastic Analysis
سال: 2001
ISSN: 1048-9533,1687-2177
DOI: 10.1155/s1048953301000181